52歌赋>国学名著>九章算术>第十三章 九章算術卷第九 句股

《九章算术》第十三章 九章算術卷第九 句股汉 · 张苍

〔一〕今有句三尺,股四尺,問為弦幾何?

  荅曰:五尺。

  〔二〕今有弦五尺,句三尺,問為股幾何?  荅曰:四尺。

  〔三〕今有股四尺,弦五尺,問為句幾何?

  荅曰:三尺。  句股術曰:句股各自乘,并,而開方除之,即弦。

  又股自乘,以減弦自乘,其餘開方除之,即句。

  又句自乘,以減弦自乘,其餘開方除之,即股。

  〔四〕今有圓材徑二尺五寸,欲為方版,令厚七寸。問廣幾何?

  荅曰:二尺四寸。

  術曰:令徑二尺五寸自乘,以七寸自乘減之,其餘開方除之,即廣。

  〔五〕今有木長二丈,圍之三尺。葛生其下,纏木七周,上與木齊。問葛長幾何?

  荅曰:二丈九尺。

  術曰:以七周乘三尺為股,木長為句,為之求弦。弦者,葛之長。

  〔六〕今有池方一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?  荅曰:

  水深一丈二尺;  葭長一丈三尺。

  術曰:半池方自乘,以出水一尺自乘,減之,餘,倍出水除之,即得水深。加出水數,得葭長。

  〔七〕今有立木,繫索其末,委地三尺。引索卻行,去本八尺而索盡。問索長幾何?

  荅曰:一丈二尺、六分尺之一。

  術曰:以去本自乘,令如委數而一,所得,加委地數而半之,即索長〔八〕今有垣高一丈。倚木於垣,上與垣齊。引木卻行一尺,其木至地。問木幾何?  荅曰:五丈五寸。  術曰:以垣高十尺自乘,如卻行尺數而一,所得,以加卻行尺數而半之,即木長數。

  〔九〕今有圓材,埋在壁中,不知大小。以鐻鐻之,深一寸,鐻道長一尺。問徑幾何?

  荅曰:材徑二尺六寸。

  術曰:半鐻道自乘,如深寸而一,以深寸增之,即材徑。

  〔一0〕今有開門去閫一尺,不合二寸。問門廣幾何?

  荅曰:一丈一寸。

  術曰:以去閫一尺自乘,所得,以不合二寸半之而一,所得,增不合之半,即得門廣。

  〔一一〕今有戶高多於廣六尺八寸,兩隅相去適一丈。問戶高、廣各幾何?

  荅曰:  廣二尺八寸;

  高九尺六寸。

  術曰:令一丈自乘為實。半相多,令自乘,倍之,減實,半其餘。以開方除之,所得,減相多之半,即戶廣。加相多之半,即戶高。

  〔一二〕今有戶不知高廣,竿不知長短。橫之不出四尺,從之不出二尺,邪之適出。問戶高、廣、袤各幾何?

  荅曰:  廣六尺,  高八尺,

  袤一丈。

  術曰:從、橫不出相乘,倍,而開方除之。所得加從不出即戶廣,加橫不出即戶高,兩不出加之,得戶袤。

  〔一三〕今有竹高一丈,末折抵地,去本三尺。問折者高幾何?

  荅曰:四尺、二十分尺之十一。  術曰:以去本自乘,令如高而一,所得,以減竹高而半其餘,即折者之高也。

  〔一四〕今有二人同所立。甲行率七,乙行率三。乙東行。甲南行十步而邪東北與乙會。問甲乙行各幾何?

  荅曰:

  乙東行一十步半;

  甲邪行一十四步半及之。

  術曰:令七自乘,三亦自乘,并而半之,以為甲邪行率。邪行率減於七自乘,餘為南行率。以三乘七為乙東行率。置南行十步,以甲邪行率乘之,副置十步,以乙東行率乘之,各自為實。實如南行率而一,各得行數。

  〔一五〕今有句五步,股十二步。問句中容方幾何?

  荅曰:方三步、十七分步之九。

  術曰:并句、股為法,句股相乘為實,實如法而一,得方一步。  〔一六〕今有句八步,股十五步。問句中容圓,徑幾何?

  荅曰:六步。

  術曰:八步為句,十五步為股,為之求弦。三位并之為法,以句乘股,倍之為實。實如法得徑一步。  〔一七〕今有邑方二百步,各中開門。出東門十五步有木。問出南門幾何步而見木?  荅曰:六百六十六步、太半步。

  術曰:出東門步數為法,半邑方自乘為實,實如法得一步。

  〔一八〕今有邑,東西七里,南北九里,各中開門。出東門十五里有木。問出南門幾何步而見木?

  荅曰:三百一十五步。

  術曰:東門南至隅步數,以乘南門東至隅步數為實。以木去門步數為法。實如法而一。

  〔一九〕今有邑方不知大小,各中開門。出北門三十步有木,出西門七百五十步見木。問邑方幾何?  荅曰:一里。

  術曰:令兩出門步數相乘,因而四之,為實。開方除之,即得邑方。

  〔二0〕今有邑方不知大小,各中開門。出北門二十步有木。出南門十四步,折而西行一千七百七十五步見木。問邑方幾何?

  荅曰:二百五十步。

  術曰:以出北門步數乘西行步數,倍之,為實。并出南門步數為從法,開方除之,即邑方。

  〔二一〕今有邑方十里,各中開門。甲乙俱從邑中央而出。乙東出;甲南出,出門不知步數,邪向東北磨邑,適與乙會。率甲行五,乙行三。問甲、乙行各幾何?

  荅曰:

  甲出南門八百步,邪東北行四千八百八十七步半,及乙。

  乙東行四千三百一十二步半。

  術曰:令五自乘,三亦自乘,并而半之,為邪行率。邪行率減於五自乘者,餘,為南行率。以三乘五,為乙東行率。置邑方半之,以南行率乘之,如東行率而一,即得出南門步數。以增邑方半,即南行。置南行步求弦者,以邪行率乘之,求東者以東行率乘之,各自為實。實如南行率得一步。

  〔二二〕有木去人不知遠近。立四表,相去各一丈,令左兩表與所望參相直。從後右表望之,入前右表三寸。問木去人幾何?

  荅曰:三十三丈三尺三寸、少半寸。

  術曰:令一丈自乘為實,以三寸為法,實如法而一。  〔二三〕有山居木西,不知其高。山去木五十三里,木高九丈五尺。人立木東三里,望木末適與山峰斜平。人目高七尺。問山高幾何?

  荅曰:一百六十四丈九尺六寸、太半寸。

  術曰:置木高減人目高七尺,餘,以乘五十三里為實。以人去木三里為法。實如法而一,所得,加木高即山高。

  〔二四〕今有井徑五尺,不知其深。立五尺木於井上,從木末望水岸,入徑四寸。問井深幾何?

  荅曰:五丈七尺五寸。  術曰:置井徑五尺,以入徑四寸減之,餘,以乘立木五尺為實。以入徑四寸為法。實如法得一寸。