外切密率
四卷。清戴煦(详见《对数简法》)撰。在戴煦之前割圆八线的研究,杜德美仅求弦矢,徐有壬有切线弧背互求二术,而于割线尚未齐全。戴将此意告项名达,并着手推演,对正余切、正余割四个函数展开式进行研究。项死后,戴于辛亥(1851)见李善兰,李将自己的《对数探源》、《弧矢启秘》给戴参考,并促成其说。戴终于咸丰壬子(1852)写定。因切割二线出于圆外,故称《外切密率》,共四卷,其卷目为:卷一本弧求切线术解。余弧求切线术解。弧背求切线算式。卷二本弧求割线术解。余弧求割线术解。弧背求割线算式。卷三切线求本弧术解。切线求余弧术解。切线求距弧术解。切线求弧背算式。卷四割线求本弧术解。割线求余弧术解。割线求半弧术解。割线求倍弧术解。割线求弧背算式。在书中他给出了一系列的关系式,其中有以弧度为自变量而展开的正切、余切、正割、余割函数式,还有以上述三角函数为自变量而求弧的展开式。由于戴煦的工作,使得清代关于三角函数幂级数展开问题研究得以完成。《外切密率》版本有《粤雅堂丛书》续集本,现藏北京大学;《古今算学丛书》本;《丛书集成初编》本等。